

Introduction

- Teesta is a trans-boundary river flowing from India into Bangladesh
- The river is being controlled by Sikkim, West Bengal and also Bangladesh to use water for irrigation and for hydro-electricity
- About 414 km Teesta travels in Sikkim for 151km, in West-Bengal-Sikkim border for 19km, inside West Bengal for 123km and in Bangladesh for 121km

Teesta River Map

of the Himalayas to the Jamuna River in Bangladesh

Two Barrages on the river

Shiliguri: West

Bengal, India Teesta Barrage Nilphamari: Bangladesh Teesta Barrage

Research Objectives

- To estimate the value of water in terms of agricultural losses for lower riparian population.
- To estimate the value of water in terms of fisheries losses in lower riparian population.
- To document changes in flooding pattern, if any, due to taming of the river

- Human being changes their behavior of
 - Production
 - Affects livelihood
- River bed rises up in un-controlled region
- Incidence of flood increases

- Water regime divides into two
 - Water stress or water scarce regime where less water is available
 - Normal water regime where water is diverted to ensure production of agriculture or electricity
- Impacts on water scarce area
 - River bed rises
 - Flood increases and spreads
 - . Risk in agriculture increases
 - Soil is nourished through silt deposits
 - Soil could be adversely affected through sand . deposits

Who are affected?

- Water is diverted to benefit one region of a country against another.
- Against each barrage there is an upper and a lower region within a country .
- Millions of people on both sides are dependent on water
- Changes in the flow of river affects these people as the . flow of ecosystem services from the river changes
 - Values also changes for others who care for non-use services of the river ecosystems
 - Biodiversity
 - Hydrological regime moderationCulture and heritage

Why valuation?

- Challenge the water 'engineers' who often ignores the off-site costs and keeps a blind eye on the losses of ecosystem services
- Challenges the cost-benefit analysis of projects . constructed primarily to benefit a region/location
- Pushes people to think through in terms of co-benefits from a project and share the nature for the benefit of mankind
- Promotes sustainable resource management.

What type of services?

- Provisional services
 Production / direct honofit to
- Production / direct benefit to peopleRegulatory services
 - Indirect and non-tangible services of the river like hydrological cycle, regulation of floods etc.
- Cultural services
 - Indirect use or non-consumptive use of river resources tourism/religion/education etc.
- Habitat services
 - Services like nursery services for animals and plants, pollination services, etc.

Steps for valuation

- · Need to relate two changes and
 - Changes in the physical condition of river
 - Corresponding changes in the flow of services
- Step 1: Measure changes in physical flow of water
- Step 2: Quantify impacts of changes
- Step 3: Value the changes

Services of Teesta river

Sikkim

- Cultural services dominates
- West Bengal
 - · Regulatory services
 - Habitat services
 - Provisional services
- Bangladesh
 - · Provisional services dominates
 - Regulatory services

Our Study

• Bangladesh

- · Provisional services dominates
 - Production of agricultural crops
 - Harvest of fishes from the river
- Regulatory services
 - Flood control/chaos [not valued but measured]
 - Biodiversity [did not value]
 - Hydrological cycle [indirectly valued]

Productivity changes mixed signal

	Crop C	hoice		Land Use	
Agricultural Crops	Scarce Water Regime	Normal Water Regime	Scarce Water Regime	Normal Water Regime	Difference in holding area
Rice (Amon and Boro)	37.1%	81.8%	65.40%	55.49%	n.s.
Potato	27.1%	37.9%	9.94%	11.52%	n.s.
Jute	21.2%	9.1%	0.37%	0.00%	n.s.
Maize	41.2%	39.4%	15.53%	17.75%	n.s.
Tobacco	11.8%	31.8%	3.19%	12.16%	+ ve ***
Total	138.2% 🕈	200.0%+	94.43%♦♦	96.92% ♦ ♦	

Note: *** means difference is statistically significant at 1%, + ve means (Teesta Project Area – Downstream Area) is positive. ♦ shows number of crops per farmer, and ♦♦ indicates % of agricultural land under these five crops.

Asian Center for Development		Ch	anges i	in costs	
	Cost per acre	e (in BD Taka)		Comparison	
	Scarce Water Regime (SWR)	Normal Water Regime (NWR)	Difference in costs per acre (in Taka)	Cost ratio between scarce and normal water regimes (SWR/NWR)	Yield ratio between scarce and normal water regimes (SWR/NWR)
	1	2	3	4	5
Rice	34632.50	23065.96	11566.54	1.50	1.95
Potato	58691.04	25834.64	32856.40*	2.27*	1.72**
Jute	49472.78	25139.33	24333.45	1.97	0.72
Maize	38912.17	34250.80	4661.37	1.14	1.08
Tobacco	31643.25	26197.90	5445.35	1.21	0.97
Source: l	Field Survey (is nor	2013) by Asiar mal water reg	a Center for Developa ime. Note: * means 1	ment, SWR is scarce v 0% level of significan	vater regime, NWR ce

Asian Center for Development	ost function approach
$C_i = \beta_{i0} + \beta_{i1}Q_i$	$+\beta_{i2}Q_i^2+\beta_{i3}Q_i^3+\gamma_iSWR+\sum\delta_{ik}U_k+\theta_jQ_j+\varepsilon_i$
Dependent Variable	The Equation
Cost of Rice Production per acre	$ \begin{array}{c} C_{thec} = 8056.24 + 321.44^{***} \hspace{0.1 in} \textbf{X} \hspace{0.1 in} Q + 0.425^{***} \hspace{0.1 in} \textbf{X} \hspace{0.1 in} Q^2. \hspace{0.1 in} R^2 = 926, n = 217 \\ 0.00008^{***} \hspace{0.1 in} \textbf{X} \hspace{0.1 in} Q^2 + 1710.03 \hspace{0.1 in} \textbf{X} \hspace{0.1 in} \textbf{SWR} \hspace{0.1 in} \dots \hspace{0.1 in} + 680.55^{**} \\ \textbf{X} \hspace{0.1 in} \textbf{JUTEQ} \end{array} $
	where, Q is production of rice (in paddy) per acre, and SWR is 1 for farms located in scarce water regime and 0 otherwise, JUTEQ is the jute yield per acre in the same plot.
Cost of Jute Production per acre	C_{Jac} =+24058.86 + 63.15296 ^{***} × Q ² + 17181.41 × R ² =.977, n=42 SWR +125.59 ^{***} × RICEQ
	where, Q is production of jute per acre, and SWR is 1 for farms located in scarce water regime and 0 otherwise, RICEQ is rice yield per acre in the same plot

ment		
Crops	Estimate using survey data	Estimate using the cost functions
1	2	3
Rice	11,566.54	1,710.03
Potato	32,856.40*	4,603.86
Jute	24,333.45	17,181.41
Maize	4,661.37	4,211.22
Tobacco	5.445.35	25,460.22*

	Acreage	by crops	Value of loss of p (millio)	provisional services
Major Crops	In the floodplains of Teesta River	Inside Teesta Barrage area	using Mean- Difference in cost per acre	using estimated coefficients from the cost functions
	1	2	3	4
Rice	405,633	61998	4,691.77	693.64
Potato	61,627	12871	2,024.85	283.72
Jute	2,295	0	55.84	39.43
Maize	96,344	19836	449.10	405.73
Tobacco	19,812	13585	107.88	504.42
Total	620,248	111,732	7,329.43	1,926.94

	Fish	eries	}	
	1	Fishers fishing	g in	Statistical
n	Teesta River	Others tributaries	differences	Significance
of catch per team per day	11.082	2.107	-8.975	**
of catch per person per day	1.816	0.736	-1.081	***
s spent per fishing trip	2.986	1.857	-1.129	
ishing per day	5.936	2.214	-3.721	***
f persons per team	5.171	1.571	-3.600	**
ing in Teesta Barrage Area	0.129	0.286	0.157	
ishing per day f persons per team ing in Teesta Barrage Area	5.936 5.171 0.129	2.214 1.571 0.286	-3.721 -3.600 0.157	***

•	 		
•			
1			

Development	н				TT-	
	Dependent varia	ble: Log of Dai	ly Fish (Catch		
Indeper	ndent Variables	Coefficient	L of Si	gn	SE	t -valu
Ln (labo	or)	1.137	***		0.094	12.04
Ln (hou	r per day)	0.252	**		0.132	1.91
Ln (Leng	gth per trip)	0.168	**		0.092	1.84
Teesta (=1 if fishing from Teesta River)	0.575	**		0.249	2.31
SWR (=1	1 if in scarce water regime)	0.027			0.191	-0.14
Constan	nt	-0.844	***		0.238	-3.55
			2013	1993		
	Description		1	2		
			in	kg		
	Catch per person per day from oth	er rivers	0.74	1.84		
	Catch per person per day from Tee	esta river	1.82	4.54		
	Percent of Teesta catch of Total C	atch	0.71	0.71		
	Average catch per person per day		1.28	3.19		

values

- In terms loss in agricultural production (crops and fisheries) the value per acre per annum is 3106 taka or 39 US dollars. This is equivalent of 3.22 taka per year per acre per cumec of water.
- In terms of loss in fisheries, it is 599 taka per fisher per year or 7.68\$. This is equivalent of 0.62 taka per year per cumec of water.

TEV due to water regime change

• The impact of which when translated into monetary terms is equivalent of 1,953.91 million taka or 25 million US\$ per year. This is equivalent of nearly 2.03 million taka (or 25,970 US\$) per cumec of water per year.

nit of an alsois and value	Value leet
cres of land; 620,248 acres of ricultural land	1926.9 million taka per year
oduction loss per day; 450,000 sher folks	26.97 million taka per year
nions: not valued	Many Unions in Nilphamari, Lalmonirhat and Rangpur now gets additional flooding, Several unions are now inundated every year.
	it of analysis and value res of land; 620,248 acres of ricultural land oduction loss per day; 450,000 her folks nions: not valued